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Abstract—This paper presents robust visual servoing approach 

based on global descriptor. Our work aims to improve real-

time performance of the visual servoing scheme. Indeed, the 

use of our new descriptor reduces the computation time of the 

visual servoing task. The error-dynamics considered in all vis-

ual servoing schemes were, usually, a first-order dynamics. In 

this paper, in order to ameliorate the mobile robot robustness 

regarding to kinematic modeling errors, we propose new way 

to achieve visual servoing tasks based on a second-order error-

dynamics. Experimental results are presented to validate our 

approaches and to demonstrate its efficiency.     

Keywords—visual servoing, global descriptor, mobile robot, 

robust control law.  

I. INTRODUCTION 

Computer vision is progressively playing more important 
role in service robotic applications. In fact, the movement of 
a robot equipped with a camera can be controlled from its 
visual perception using visual servoing technique. The 
aim of the visual servoing is to control a robotic sys-
tem using visual features acquired by a visual sensor [1]. In-
deed, the control law is designed to move a robot so that the 
current visual features s, acquired from the current pose  r, 
will reach the desired features s� acquired from the desired 
pose r�, leading to a correct realization of the task.  

The control principle is thus to minimize the error 

 e �  s � s� where s is a vector containing the current values 
of the chosen visual information, and s� its desired values. 
The basic step in image-based visual servoing is to determine 
the adequate set of visual features to be extracted from the 
image and used in the control scheme in order to obtain an 
optimal behavior of the robot.  

In the literature several works were concerned with sim-
ple objects and the features used as input of the control 
scheme were generally geometric: coordinates of points, 
edges or straight lines [2, 3]. 

These geometric features have always to be tracked and 
matched over frames. This process has proved to be a diffi-
cult step in any visual servoing scheme. Therefore, in the last 
decade, the researchers are focused on the use of global visu-
al features. In fact, in [4] the visual features considered are 

the luminance of all image pixels and the control law is 
based on the minimization of the error which is the differ-
ence between the current and the desired image. 

Others works are interested in the application of image 
moments in visual servoing, like in [5] where the authors 
propose a new visual servoing scheme based on a set of mo-
ment invariants. The use of these moments ensures an expo-
nential decoupled decrease for the visual features and for the 
components of the camera velocity. However this approach 
is restricted to binary images. It gives good results except 
when the object is contrasted with respect to its environment.  

In [6], the authors present a new criterion for visual 
servoing: the mutual information between the current and the 
desired image. The idea consists in maximizing the infor-
mation shared by the two images. This approach has proved 
to be robust to occlusions and to very important light varia-
tions. Nevertheless, the computation time of this method is 
relatively high. 

The work of [7] proposes the image gradient as visual 
feature for visual servoing tasks. This approach suffers from 
a small cone of convergence. Indeed, using this visual fea-
ture, the robotic system diverges in the case of large initial 
displacement. Another visual seroving approach which re-
moves the necessity of features tracking and matching step 
has been proposed in [8]. This method models the image fea-
tures as a mixture of Gaussian in the current and in the de-
sired image. But, using this approach, an image processing 
step is always required to extract the visual features. 

 Numerous research studies focused on the control of 
mobile robots [14, 15, 16, 18]. Thus, highly nonlinear control 
techniques were developed since these systems are associat-
ed with nonholonomy constraints [20]. In the literature, sev-
eral effective control strategies are used for nonholonomic 
platforms [13, 19, 17]. The control techniques are designed 
mainly for unicycle-type and car-like mobile robots.  

In this work, the control of a unicycle mobile platform 
using a single camera attached to the robot (eye-in-hand) is 
addressed. The error-dynamics considered in all visual 
servoing schemes were, usually, a first-order dynamics. In 
this paper, in order to ameliorate the mobile robot robustness 
regarding to kinematic modeling errors, we propose new way 



to achieve visual servoing tasks based on a second-order er-
ror-dynamics. 

The main contribution of this paper consists in the appli-
cation of our robust control law on the new global visual fea-
tures: random distribution of limited set of pixels luminance.  

Our features improve the computation time of visual 
servoing scheme and avoid matching and tracking step. We 
illustrate in this work an experimental analysis of the robotic 
system behavior in the case of visual servoing task based on 
our new approaches.  

This paper is organized as follows: section 2 illustrates 
our new visual features and the corresponding interaction 
matrix. Section 3 presents our robust control law based on 
the second-order error-dynamics. Finally, experimental re-
sults are presented in section 4. 

II. RANDOM DISTRUBITION OF LIMITED SET OF PIXELS 

LUMINANCE AS VISUAL FEATURES    

The use of the whole image luminance as global visual 
features for visual servoing tasks, as in [9], requires too high 
computation time. Indeed, the big size of the interaction ma-
trix related to the luminance of all image pixels leads to a 
very slow convergence of the robotic system.  

Therefore, we propose in this paper a new visual feature 
which is more efficient in terms of computation time and 
doesn’t require any matching nor tracking step. 

In fact, instead of using the luminance of all image 
points, we work just with the luminance of a random distri-
bution of a limited set of image points (n pixels) [21]. Thus, 
the visual features, at a position r of the robot, are: 

s�	r
  �  E��	r
                                    (1) 

with E��	r
 is the luminance of random set of image pix-
els taken at frame i.  

          E��	r
 � 	I��  , I��   , I��  , … . , I��  
                         (2) 

where I��  is the luminance of the pixel k taken randomly 
at the frame i.         

For each new frame, we get a new random set of image 
pixels. Thus, the desired and the current visual features will 
continuously change along the visual servoing scheme. In 
that case, the error e will be: 

                e� � E��	r
 � E��� 	r�
                               (3) 

where E��	r
 represent the current visual features and  

E��� 	r�
 the desired ones at the frame i. 
Consequently, in our method, the error used in the build-

ing of the control law is variable, it changes at each frame.  

The choice of n is based on the image histogram. We 
take n equal to the maximum value of the current image his-
togram. We can then avoid the fact that the n pixels ran-

domly chosen will have the same luminance. Hence, we 
guarantee the good luminance representation of the image.  

Since the number n depends on the histogram of the cur-
rent image, it slightly changes during the visual servoing 
scheme. Let us point that n is always very small compared 
to the total number of image pixels (in our case 320 � 240). 
We note that the more the image is textured, the smaller n 
is. 

The visual servoing is based on the relationship between 
the robot motion and the consequent change on the visual 
features. This relationship is expressed by the well known 
equation [10]: 

 s� � L v                                         (4) 

where L  is the interaction matrix that links the time var-
iation of s to the robot instantaneous velocity v [1]. 

After identification of the visual features, the control law 
requires the determination of this matrix which is at the cen-
ter of the development of any visual servoing scheme. In our 
case, we look for the interaction matrix related to the lumi-
nance of a pixel x in the image. 

This interaction matrix that relates the temporal variation 
of the luminosity I	x
 to the control law v# is: 

L�	$
 � � %I&  L$                                  (5) 

In this case, we can write the interaction matrix L�	$
 in 

terms of the interaction matrices L$  and L'  related to the 

coordinates of x � 	x, y
 and we obtain: 

    L�	$
 � �	 %I$  L$ ) %I'  L')                          (6) 

with %I$ et %I' are the components along x and y of  

%I	x
 and we have: 

     L$ � 	 � �
+            

$
+         � 	1 ) x� 
    
                 (7)  

 

L' � 	 0                '+               � xy    
                   (8) 

We get the interaction matrix related to our new features 

(L-./) by combining the interaction matrices related to the n 

pixels randomly chosen.  

Thus, the size of the interaction matrix related to our 
visual features (L-./) is very small compared to the size of 

the interaction matrix related to the whole image luminance. 

III. CONTROL LAW BASED ON SECOND-ORDER ERROR-

DYNAMICS 

In our work we use global photometric visual features. 
In this case most of classical control laws fail. Therefore, we 
have interest in turning the visual servoing scheme into an 
optimization problem to get the convergence of the mobile 



robot to its desired pose [11, 12]. In fact, the aim of the con-
trol law will be the minimization of a cost function which is 
the following: 

   C	r
 � 1s	r
 � s	r�
2 & 	s	r
 � s	r�

            (9) 

where s	r
 are the current visual features (E��	r
) and 

 s	r�
 are the desired ones (E��� 	r�
). 
The cost function minimization is, essentially, based on 

the following step: 

r�3� � r� 4d	r�
                          (10) 

where “4” denotes the operator that combines two con-
secutive frame transformations, r� is the current pose of the 
mobile robot (at frame i), r�3� is the next pose of the mobile 
robot and d	r�
 is the direction of descent. 

This direction of descent must ensure that 
d	r�
 %C	r�
 6 0. In this way, the movement of the robot 
leads to the decrease of the cost function. 

Optimization methods depend on the direction of de-
scent used in the building of the control law. The control 
law usually used in visual servoing context is given by: 

v � �λ L 3 1s	r
 � s	r�
2                        (11) 

where λ is a positive scalar and L 3 is the pseudo inverse 
of the interaction matrix.  

This classical control law gives good results in the case 
of visual servoing task based on geometric visual features 
[10]. Since we work with photometric visual features this 
classical control law fails and doesn’t ensure the conver-
gence of the robot [4]. Thus, the solution consists in the use 
of a control law based on the Levenberg-Marquardt ap-
proach.  

This approach is based on the error usually used in visu-
al servoing applications which has an exponential decrease 
defined by: 

e� ) λe � 0                            	12
 
This error-dynamics leads to the following control law: 

    v#� � �λ 8 H-./ ) µ diag =H-./>? @� L-./
& e�       	13
 

In this work, we move from the first-order error-
dynamics to the second-order error-dynamics defined by the 
following equation: 

eA ) k�e� ) k�e � 0                         	14
 
Thus,  

e� � � �
�B eA �

�C
�B e                             	15
 

The new control law, used in the visual servoing 
scheme, has then the following form:  

V � �L 3	 ��B eA )
�C
�B e 
                        	16
 

where the second derivative of the error is defined by: 

eA � GH@�GHIB 3GHIC
&C                              	17
 

with e� � s� � s�� 
The control law generated to the robot, using our new 

features, is then given by: 

 v#� � � 8 H-./ ) µ diag =H-./>? @� L-./
& KAM          (18) 

with    A � �
&C�B 	 e�@� � 2e�@� 
 ) = �

&C�B )
�C
�B> e� 

where e� is the error corresponding to these new fea-
tures:  

                      e� � E��	r
 � E��� 	r�
                          (19) 

and with 

                                H-./ � L-./
& L-./                          (20) 

This approach ensures more robustness regarding to mo-
bile robot modeling errors during visual servoing task. We 
choose the coefficients k� et k� in such a way that the roots 
of the characteristic polynomial of 	14
 have negatives real 
parts. 

The following equations present the kinematic model of 
the mobile robot with error (ρ): 

  x� � vO cosθ ) ρ 

                             y� � vO sinθ                             	21
                             
θ� � ωO 

The kinematic modeling errors induce mobile robot sin-
gularities. Thus, during a positioning task, the robot diverg-
es and doesn’t reach its desired pose. In fact, in the presence 
of modeling error, the movement performed by the mobile 
robot doesn’t correspond to the velocities generated by the 
control law. 

Using this new error–dynamics the robot converges to its 
desired pose even in the presence of modeling errors. How-
ever, this convergence was not guaranteed in visual servoing 
scheme based on an exponential decrease of the error.  

IV. EXPERIMENTAL RESULTS  

We present the results of a set of experiments conducted 
with our visual features. All the experiments reported here 



have been obtained using a camera mounted on a mobile ro-
bot. In each case, the mobile robot is first moved to its de-
sired pose r�  and the corresponding image I� is acquired. 
From this desired image, we extract the desired visual fea-
tures s�. The robot is then moved to a random pose r and the 
initial visual features s are extracted. The velocities (v,ω) 
computed, at each frame, using the control law, are sent to 
the robot until its convergence. The interaction matrix is 
calculated at each frame of the visual servoing scheme. We 
involve here our new method based on the second-order er-
ror-dynamics and we compare it to the classic visual 
servoing approach based on a first-order error-dynamics. 
We conduct our experiments on a virtual platform of 
VRML, therefore we can recuperate, at each frame, the pose 
of the mobile robot in terms of position along two transla-
tional axes and around one rotational axe. 

     

 (a)                                                (b) 

                     

  

    (c)                                               (d) 

 

 

(e) 

Fig. 1. Visual servoing task (x axis in frame number) : (a) Initial image, (b) 

Final image, (c) Translational positioning errors: ∆Tx and ∆Ty in meter (m) 

, (d) Rotational positioning error: ∆Rz in radian (rad), (e) Mobile robot 

path. 

 

During the experiments conducted on the VRML envi-
ronment we take as initial positioning error: ∆r��Y �	 18 cm  , 12cm, 9° 
.  

In a first experiment, we suppose the existence of error 
in the kinematic model of the wheeled mobile robot: ρ �
0.5. In the presence of such a modeling error, the classic 
Levenberg-Marquardt approach based on the exponential 
decrease of the error doesn’t ensure the convergence of the 
robot to its desired pose.  

In fact, the mobile robot gets at a local minimum (Fig. 
1e). It is clear from Fig. 1e that the system has been attract-
ed to a local minimum far away from the desired configura-
tion. Figure 1a shows the scene corresponding to the initial 
pose of the robot. Figure 1b illustrates the scene correspond-
ing to the desired pose which is not reached by the robot in 
this case. The translational and the rotational positioning er-
rors during the positioning task (Fig. 1c and Fig. 1d) don’t 
converge to zero due to the local minimum. We present on 
Fig. 1e the mobile robot path during the visual servoing 
task.  

     

(a)                                                (b) 

    

                       (c)                                               (d) 

 

(e) 

Fig. 2. Visual servoing task (x axis in frame number) : (a) Initial image, (b) 

Final image, (c) Translational positioning errors: ∆Tx and ∆Ty in meter (m) 

, (d) Rotational positioning error: ∆Rz in radian (rad), (e) Mobile robot 

path. 



In a second experiment, we keep the same error ρ in the 
kinematic model of the mobile robot. Nevertheless, the vis-
ual servoing task is, now, performed using the new error-
dynamics with k1=8 and k2=39. We remark that the mobile 
robot converges to its desired pose without singularities.  

Figure 2a illustrates the initial scene while the desired 
one is shown on Fig. 2b. The translational positioning errors 
	∆Tx, ∆Ty
 between the current and the desired pose during 
the positioning task are shown on Fig. 2c. The rotational po-
sitioning error 	∆Rz
 is illustrated on Fig. 2d. We present on 
Fig. 5e the mobile robot path during the visual servoing 
task. 

V. CONCLUSION 

In this paper we combine two approaches leading to ro-
bust visual seroing using new global feature. Generally, 
when the used global feature is the whole image luminance 
the mobile robot takes so much time to reach its desired 
pose; therefore we propose a new approach to achieve fast 
and real-time visual servoing tasks. This approach is based 
on new global feature which is the luminance of a random 
distribution of image points.  

In the literature, the error used in the building of the con-
trol law, was usually characterized by an exponential de-
crease. In order to achieve robust control law, we propose, 
in this work, new way of error decrease that guaranties ro-
bust visual servoing. In fact, we replace the first-order error-
dynamics by the second-order error-dynamics. In such a 
way, the mobile robot reaches its desired pose even in the 
case of kinematic modeling errors. 

Future works can be intended to verify the robustness of 
our approach with respect to partial occlusions and large il-
lumination changes. 
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